Lithiation-induced embrittlement of multiwalled carbon nanotubes.
نویسندگان
چکیده
Lithiation of individual multiwalled carbon nanotubes (MWCNTs) was conducted in situ inside a transmission electron microscope. Upon lithiation, the intertube spacing increased from 3.4 to 3.6 Å, corresponding to about 5.9% radial and circumferential expansions and ∼50 GPa tensile hoop stress on the outermost tube wall. The straight tube walls became distorted after lithiation. In situ compression and tension tests show that the lithiated MWCNTs were brittle with sharp fracture edges. Such a failure mode is in stark contrast with that of the pristine MWCNTs which are extremely flexible and fail in a "sword-in-sheath" manner upon tension. The lithiation-induced embrittlement is attributed to the mechanical effect of a "point-force" action posed by the intertubular lithium that induces the stretch of carbon-carbon bonds in addition to that by applied strain, as well as the chemical effect of electron transfer from lithium to the antibonding π orbital that weakens the carbon-carbon bond. The combined mechanical and chemical weakening leads to a considerable decrease of the fracture strain in lithiated MWCNTs. Our results provide direct evidence and understanding of the degradation mechanism of carbonaceous anodes in lithium ion batteries.
منابع مشابه
Solid Phase Extraction of Amount Cu(II) Using C18 Disks Modified Schiff Base-Chitosan Grafted Multiwalled Carbon Nanotubes
A novel and selective method for the fast determination of trace amounts of Cu(II) ions in water samples has been developed. The procedure is based on the selective formation of Cu(II) at optimum pH by elution with organic eluents and determination by flame atomic absorption spectrometry. The method is based on complex formation on the surface of the ENVI-18 DISKTM disks modified Schiff base-ch...
متن کاملNonlinear Vibration Analysis of Embedded Multiwalled Carbon Nanotubes in Thermal Environment
In this article, based on the Euler-Bernoulli beam theory, the large-amplitude vibration of multiwalled carbon nanotubes embedded in an elastic medium is investigated. The method of incremental harmonic balance is implemented to solve the set of governing nonlinear equations coupled via the van der Waals (vdW) interlayer force. The influences of number of tube walls, the elastic medium, nanotub...
متن کاملCharacterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials.
STATEMENT OF PROBLEM Most fractures of dentures occur during function, primarily because of the flexural fatigue of denture resins. PURPOSE The purpose of this study was to evaluate a polymethyl methacrylate denture base material modified with multiwalled carbon nanotubes in terms of fatigue resistance, flexural strength, and resilience. MATERIAL AND METHODS Denture resin specimens were fab...
متن کاملIn Situ TEM Experiments of Electrochemical Lithiation and Delithiation of Individual Nanostructures
© 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinhe wileyonlinelibrary.com DOI: 10.1002/aenm.201200024 Understanding the microscopic mechanisms of electrochemical reaction and material degradation is crucial for the rational design of high-performance lithium ion batteries (LIBs). A novel nanobattery assembly and testing platform inside a transmission electron microscope (TEM) has been designed, wh...
متن کاملPreparation and Characterization of Multiwalled Carbon Nanotubes-Polythiophene Nanocomposites and its Gas Sensitivity Study at Room Temperature
The nanocomposites of polythiophene and carboxylated multiwalled carbon nanotubes (MWCNTs) were synthesized by in-situ chemical oxidative polymerization method using anhydrous ferric chloride (FeCl3) as an oxidant. The MWCNTs functionalized and ultrasonicated to obtain uniform dispersion within the polythiophene matrix. Field emission scanning electron microscopy was used to characterize the mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 5 9 شماره
صفحات -
تاریخ انتشار 2011